Подпишись и читай
самые интересные
статьи первым!

Как рассчитывается эффективная ставка. Расчет Эффективной ставки в MS EXCEL

Эффективная процентная ставка (ЭПС), или полная стоимость кредита, — это совокупность всех расходов, которые банк предполагает понести в связи с заключением кредитного договора. Это заранее известные платежи, которые стандартно возникают при обслуживании займа. Это могут быть следующие комиссии и сборы:

  • за рассмотрение кредитной заявки;
  • за выдачу кредита;
  • за открытие и обслуживание счетов заемщика;
  • за расчетное и операционное обслуживание.

Так как зачастую при получении крупных сумм (ипотечный или автокредит) возникают дополнительные расходы на проведение профессиональной оценки рыночной стоимости объекта, оплату нотариальных услуг, расходы на страхование самого заемщика или объекта, то подобные платежи банк тоже вправе включить в состав ЭПС.

Важный нюанс: если какой-либо платеж по сроку и сумме не известен заранее при подписании договора, банк не имеет права включать его в состав ЭПС. Так, например, при досрочном погашении кредита сумму комиссии за погашение нельзя изначально включать в состав процентной ставки, так как наступление данной ситуации неизвестно заранее и она может вообще не возникнуть. То же касается и всевозможных штрафов и пеней за просрочку — они начисляются и предъявляются к уплате по факту возникновения, а не заранее.

Заемщику нужно помнить, что его право на получение полной информации по кредиту, причем до подписания кредитного договора, защищено законом.

Закон о потребительском кредитовании

от 13.12.2013 г. приводит формулу расчета ЭПС и обязывает кредитное учреждение указывать ее размер в договоре займа. Однако этот закон не распространяется на ипотечные кредиты, которые попадают под

действие ФЗ от 02.12.1990 N 395-1 с изменениями от 26.07.2017 N 212-ФЗ, от 23.04.2018 N 106-ФЗ, от 23.05.2018 N 119-ФЗ.

Как выбрать наиболее выгодный кредит

Формула, по которой производится расчет ЭПС, особенно если договором предусмотрена плавающая ставка, довольно сложная для рядового заемщика. Поэтому самостоятельный ее расчет по формуле не имеет особого смысла, тем более, что закон обязывает банк раскрывать данную информацию.

Но этот показатель можно и нужно использовать, выбирая, в каком банке условия займа будут выгоднее для заемщика. Однако нужно иметь в виду два момента:

  • для сравнения в разных банках нужно использовать одинаковую сумму и сроки кредита;
  • вместо громоздкой формулы удобнее сравнить суммы итоговой выплаты, указанные в графике платежей. Проведя несложный подсчет отношения итоговой суммы выплаты к сумме займа, получим реальную ставку, по которой заемщику придется выплачивать задолженность.

Например, при сумме кредита в 150 000 руб. под 10% годовых итоговая выплата по предварительно составленному банком графику платежей составила 175 255 руб. Итого ЭПС по кредиту равна: 175 255 / 150 000 *100 = 16,83%

Если же к итоговой выплате добавить еще и суммы тех платежей, которые не вошли в эффективную ставку, но все равно были уплачены заемщиком, получим еще более реальную картину стоимости кредита, правда это возможно будет узнать только после его окончательного погашения.

Размещенные на сайтах банков кредитные калькуляторы позволяют, не посещая банк, произвести расчет онлайн, сравнить предложения и выбрать лучший вариант.

Учитывая, что ряд платежей не входит в эффективную ставку, но возникновение обязанностей по их уплате вполне возможно, данную ставку нельзя считать окончательным критерием при выборе кредита. Наиболее полную картину заемщику даст только подсчет всех платежей, понесенных им за время пользования займом.

Как определить какой банк предлагает самые выгодные условия кредитования? Многие заёмщики ориентируются на . Например, один банк даёт кредит под 22% годовых, а другой – под 18% . Заёмщик сравнивает эти цифры и авторитетно заявляет: «Второй банк выгоднее!» Ага, выгоднее! А как же скрытые платежи в виде различных комиссий и сборов? Их что, учитывать не будем?

В общем, если вы решили сравнить условия кредитования в банках по величине процентной ставки, то анализируйте не годовую, а эффективную процентную ставку. Давайте выясним, что это такое, проанализируем её формулу и выполним расчёт.

Что такое эффективная процентная ставка

Много лет назад сотрудничество с банками было простым и понятным: пришёл в отделение, посмотрел на годовую процентную ставку и уже имеешь полное представление о стоимости кредита. Не было никаких дополнительных комиссий, сборов и других скрытых платежей, а график погашения кредита рассчитывался по одной единственной схеме – .

Сейчас же заёмщика при получении кредита ожидает полный «трэш». Вот он сидит дома на унитазе и мирно читает какую-то рекламную газетку. Но вдруг его лобик сморщился, затем глазки забегали, и на лице появилась безумная улыбка. Через минуту «пациент» выбегает из туалета с криком: «Нашёл! Я нашёл банк с самыми выгодными условиями кредитования! Это банк «Лохотрон-инвест», который выдаёт ! Люся, где мои кеды? Срочно погладь шнурки от них!»

Вот он уже стоит в отделении банка и с умным выражением лица внимательно слушает топ-менеджера Пьетро Спагеттини, который методично двумя вилками навешивает ему на уши лапшу разных сортов. В общем, «охотник» и «жертва» встретились.

Действительно, «Лохотрон-инвест» предлагает заёмщикам самую низкую в стране годовую процентную ставку по кредитам. Правда, чтобы получить кредит, придётся оформить страховку, оплатить услуги оценщика и нотариуса, за открытие счёта надо внести комиссию, ну и там ещё немного – «по-мелочам», а погашать кредит необходимо только . Но это же всё ерунда – главное, что годовая процентная ставка у них самая выгодная!

В итоге получается, что заёмщики компании «Лохотрон-инвест» в реальности переплачивают за кредиты гораздо больше, чем клиенты других банков.

При помощи скрытых платежей и комиссий современные банки маскируют свои реальные условия кредитования. Вывести их на чистую воду нам поможет эффективная процентная ставка. Что это такое? Читаем определение:

Эффективная процентная ставка – это реальная переплата по кредиту, выраженная в процентах годовых.

То есть, если умножить сумму кредита на эффективную процентную ставку и на количество лет, на которое он взят, то в итоге получится сумма, которую вы переплатите за пользование кредитом. Естественно, в неё включены все комиссии, сборы и прочие скрытые платежи. Кстати, хотим обратить ваше внимание:

Некоторые кредиторы при расчёте эффективной процентной ставки не учитывают расходы, которые заёмщик заплатит сторонним организациям, таким как нотариальные конторы, страховые компании, экспертные фирмы и т. д. В результате, клиент получит искажённую информацию о реальной стоимости кредита.

Так что будьте внимательны, друзья. Тщательно анализируйте и проверяйте все расчёты, предоставляемые банком. Правда, для этого надо знать специальные формулы. Вот их мы сейчас и рассмотрим.

Формула эффективной процентной ставки

Девиз многих банков можно сформулировать тремя словами:

«Максимально запутать заёмщика».

Вот и с эффективной процентной ставкой получилось что-то аналогичное. Они её начали рассчитывать по каким-то сложным непонятным формулам. Наибольшее распространение получил этот «шедевр»:

S 0 – сумма выданного кредита ();
R 0 – первоначальный платёж;
R k – платёж выполненный в определённый период (k );
n – общее количество платежей;
i – эффективная процентная ставка;
t k – период выплаты k -го платежа.

Страшно? Не бойтесь! Сейчас всё объясним! Смотрите, вот этот значок «Σ » называется «сигма», он обозначает суммирование (в данной формуле – с первого платежа и до n -го). Стартовый платёж, в который включаются услуги нотариусов, оценщиков и прочей «нечисти» обозначается в формуле буквой R 0 (условно говоря – «нулевой» платёж). Естественно, в формулу не включены различные штрафы и неустойки (считается, что заёмщик своевременно вносит все необходимые платежи по кредиту). Эффективная процентная ставка (i ) «спрятана» внутри формулы, и «вытащить» её оттуда будет нелегко. Вот такая интересная формула, друзья.

Тем не менее, даже глядя на этот «шедевр» сразу бросаются в глаза, как некоторые неопределенности, так и потенциальные возможности для манипуляций. Например, в данную формулу кредитор не станет вносить расходы на страхование предмета залога по договору залога. А заемщик заинтересован в том, чтобы в расчете эффективной процентной ставки были учтены абсолютно все платежи. Ведь ему важно получить не столько красивую, сколько реальную цифру. И если страховка заложенного банку автомобиля, купленного в кредит за 500 000 руб. составляет 4% от его стоимости, то с учетом этих расходов, заёмщику кредит за год реально обойдётся на 20 000 руб. дороже. Аналогичным образом обстоят дела и с другими платежами, которые не учитываются кредиторами.

Из всего вышесказанного напрашивается вывод, что реальный показатель эффективной процентной ставки лучше рассчитывать самостоятельно, учитывая все платежи, связанные с получаемым кредитом. Для этого мы вам рекомендуем использовать простую и понятную формулу:

i – эффективная процентная ставка (%);
S – общая сумма всех выплат по кредиту;
S 0 – сумма выданного кредита;
n – срок кредитования (указывается количество месяцев).

В общую сумму всех выплат по кредиту (S ) входят не только банковские поборы в виде скрытых комиссий, комиссий за открытие счёта и т.д. Сюда входят и всевозможные страховки, оплаты нотариальных услуг, выплаты оценщикам – в общем, все те платежи, которые требуется выполнить для получения кредита.

Кстати, обратите внимание на один важный момент:

Величина эффективной процентной ставки существенно зависит от общего срока кредитования. Ведь при её расчете учитываются не только ежемесячные, но и разовые комиссии и сборы.

Например, банк выдал вам кредит в 200 000 рублей под 20% годовых и взял с вас комиссию за его выдачу в размере 2000 рублей. Независимо от того, сколько вы будете пользоваться кредитом (один день или пять лет), его стоимость увеличится на 2000 рублей. Согласитесь, для однодневного кредита данная цифра выглядит просто драконовской на фоне начисленных процентов по дифференцированной схеме (за один день около 110 рублей). А вот в течение пяти лет по этому кредиту процентов «набегает» на сумму 101 667 рублей, на фоне которых 2000 рублей воспринимаются как мелкие текущие издержки.

Расчет реальной эффективной процентной ставки по кредиту

Давайте в качестве примера рассчитаем эффективную процентную ставку по аннуитетному кредиту, взятому на 12 месяцев под 22% годовых. Ознакомиться с его графиком погашения вы можете . Итак, нам для расчётов понадобятся следующие исходные данные:

Сумма выданного кредита (S 0 ) – 50 000 руб.
Общая сумма выплат (S ) – 56 157 руб.
Срок кредитования (n ) – 12 месяцев .

Подставляем их в нашу формулу и считаем:


Итак, эффективная процентная ставка по данному кредиту равна 12,31% . Это означает, что взяв в кредит 50 000 рублей на один год (12 месяцев ), наш заёмщик реально заплатит банку и другим структурам 12,31% годовых от этой суммы, что составит 6157 рублей . В результате, общий размер выплат будет равен 56 157 рублей .

Хотим обратить ваше внимание, что в нашем примере учтены только выплаты процентов по кредиту (предполагается, что заёмщик имеет дело с банком, не начисляющим скрытых платежей). Если бы такие платежи были начислены, то они бы тоже были включены в общую сумму выплат (S ). Естественно, в результате увеличится размер эффективной процентной ставки по кредиту.

Кстати, в настоящее время банки рассчитывают не эффективную процентную ставку, а . Перейдя по указанной ссылке, вы узнаете, что это такое и по каким формулам рассчитывается.

Ну что, друзья, разобрались с данной темой? Вот и отлично!. Оставайтесь с нами!

Эффективная процентная ставка — это термин, который чаще всего используется для обозначения полной стоимости кредита. Банки любят скрывать реальный процент по кредитам, которые они предоставляют, ведь чем меньше процент по кредиту, тем привлекательнее банк для потенциальных заемщиков. В МСФО метод эффективной ставки процента используется для расчета амортизированной стоимости финансовых инструментов. Так что же это за термин «эффективная процентная ставка»?

Финансовый инструмент — это договор об обмене денежными потоками

Любой финансовый инструмент – это договор (сделка) между двумя сторонами. Одна сторона сделки (скажем, банк) имеет на руках много денег сейчас, другая сторона сделки (скажем, бизнес) нуждается в деньгах. Если эти стороны — банк и бизнес — приходят к соглашению, то заключается кредитный договор. Если говорить непрофессионально, то банк меняет свой мешок денег, который у него есть сегодня, на денежные потоки в будущем. Бизнес, со своей стороны, знает, как организовать эти будущие денежные потоки от своей деятельности, но для этого ему нужны денежные средства сегодня.

Банк дает деньги на какое-то время в надежде получить доход, бизнес берет деньги и отдает взамен юридически обязывающий документ (договор) с обещанием вернуть все деньги плюс какую-то дополнительную сумму за пользование денежными средствами в течение определенного времени. Собственно говоря, финансовый инструмент — это сделка по обмену денежного мешка, имеющегося в наличии, на денежные потоки в будущем. Одна сторона отдает деньги и получает бумагу (договор), другая сторона — отдает бумагу (договор) и получает деньги.

Более понятный пример для любого человека — это депозитный вклад в банке. Сегодня у вас есть лишние денежные средства, и вы согласны отдать их банку на время за определенную плату. Вы приходите в банк, отдаете свои накопления, а взамен получаете «бумагу» — договор вклада. Это тоже финансовый инструмент. Вы можете снять выросшую сумму денег в конце срока вклада единоразово. Или можете снимать проценты, а в конце срока вклада снять сумму основного долга, в этом случае вы обменяете «мешок» денег сегодня на потоки денежных средств в течение срока вклада. Так вот ставка процента, которая приравняет сегодняшний вклад и ВСЕ денежные потоки в будущем, и называется эффективной процентной ставкой по вкладу. Она показывает реальный уровень дохода по вкладу в процентах.

Эффективная ставка процента и внутренняя норма доходности — это одно и то же

У каждого финансового инструмента есть две стороны: инвестор и заемщик. Эффективная процентная ставка по одному и тому же финансовому инструменту показывает, с одной стороны, стоимость кредита для заемщика а, с другой стороны, доходность вложений для инвестора. Инвестор обычно использует термин «внутренняя норма доходности», заемщик предпочитает использовать другой термин — «эффективная процентная ставка». Поэтому чаще всего можно встретить словосочетания «внутренняя норма доходности инвестиции» и «эффективная процентная ставка по кредиту».

Эффективная процентная ставка по финансовому инструменту – это ставка, применяемая при точном дисконтировании всех будущих денежных платежей ИЛИ поступлений от финансового инструмента.

Другими словами, если вы — заемщик и берете кредит в 1,000,000 рублей, который будет выплачивать несколько лет ежемесячными платежами, плюс к этому должен заплатить ещё какие-то комиссии и сборы, то ставка процента (ставка дисконтирования), приравнивающая все сборы и будущие платежи по кредиту с одной стороны и сумму кредита в миллион рублей с другой — это и будет эффективная ставка по кредиту.

Если вы — инвестор и кладете деньги в банк, то эффективная ставка по вашему вкладу — это ставка процента, приравнивающая сумму вашего взноса сегодня и сумму всех сумм к получению (ежегодные проценты+основной долг) в будущем. На этом сайте есть подробная статья , в которой рассказано и о .

В следующей статье будет рассмотрен частный случай расчета эффективной процентной ставки по кредиту.

      После того, как Центробанк РФ обязал коммерческие банки раскрывать эффективную процентную ставку (ЭПС) по кредитам, это словосочетание прочно вошло в лексикон наших соотечественников. Меж тем, мало кто из них знает, что это такое. Данная статья призвана заполнить такой досадный пробел в знаниях, а также раскрыть один из приемов вычисления ЭПС.

Собственно, смысл эффективной процентной ставки достаточно прост — она призвана отражать реальную стоимость кредита с точки зрения заемщика, то есть учитывать все его побочные выплаты, непосредственно связанные с кредитом (помимо платежей по самому кредиту). Например, такими побочными выплатами являются печально известные «скрытые» банковские комиссии — комиссии за открытие и ведение счета, за прием в кассу наличных денег и т.п. Другой пример: если вы берете автокредит, то банк обязует вас страховать приобретаемый автомобиль на протяжении всего срока кредитования. При этом страховка будет являться для вас обязательной побочной выплатой (правда, уже не самому банку, а страховой компании).

Что интересно, Центробанк, обязав коммерческие банки раскрывать эффективную процентную ставку по кредитам и даже предоставив формулу для ее расчета, не указал, какие конкретно платежи должны в этот расчет включаться. В результате разные банки придерживаются разных точек зрения на этот вопрос: многие, например, не включают в расчет как раз страховые выплаты.

Тем не менее, наиболее правильным и справедливым выглядит подход, согласно которому в расчет эффективной процентной ставки включаются все платежи, которые являются обязательными для получения данного кредита. В частности, все обязательные страховые выплаты.

Разобравшись с этим вопросом, мы теперь можем дать строгое определение эффективной процентной ставки.

Эффективная процентная ставка — это сложная процентная ставка по кредиту, рассчитанная в предположении, что все платежи, необходимые для получения данного кредита, идут на его погашение.

То есть, если в результате получения кредита размером S 0 заемщик вынужден совершать платежи R 0 , R 1 , R 2 , ..., R n в моменты времени t 0 = 0, t 1 , t 2 , ..., t n соответственно (сюда входят как платежи по самому кредиту, так и побочные комиссии, страховые выплаты и т.п.), то эффективная процентная ставка i находится из соотношения

Если все платежи заемщика, за исключением, возможно, самого первого, одинаковы (R 1 = R 2 = ... = R n = R ), то в соответствии с формулой вычисления суммы конечной геометрической прогрессии соотношение для определения эффективной процентной ставки будет таким:

.

К сожалению, найти точное значение эффективной процентной ставки даже в таком сравнительно простом случае невозможно, поэтому приходится его подбирать (лучше всего — при помощи специального численного метода). Как именно — об этом пойдет речь далее.

Пример.

Для кредита со следующими условиями:

  • срок кредитования — 3 года;
  • процентная ставка (будем обозначать ее j ) — 18% годовых;
  • схема погашения кредита — ежемесячными равными (аннуитетными) платежами;
  • комиссия за организацию кредита — 1% от его суммы;
  • ежемесячная комиссия за ведение ссудного счета — 0,1% от суммы кредита

эффективная процентная ставка будет составлять 22,8%. Для проверки найдем значения всех переменных, присутствующих в формуле (3):

Подставляя эти значения в формулу (3), после сокращения на S 0 легко убеждаемся в справедливости равенства (если, конечно, пренебречь погрешностью округлений):

.

Общий метод вычисления ЭПС

Итак, мы уже отметили, что размер эффективной процентной ставки даже для относительно простых ссудных операций нельзя найти с помощью какой-либо формулы. На помощь здесь приходят так называемые численные методы , которые позволяют за конечное число шагов вычислить приближенное значение искомой величины с необходимой точностью.

Общий метод приближенного вычисления эффективной процентной ставки, который мы рассмотрим далее, может применяться для любой ссуды, платежи по которой совершаются через одинаковые промежутки времени. Его основу составляет численный метод Ньютона , суть которого, в общих чертах, заключается в следующем.

Допустим, нам нужно найти решение уравнения f (x ) = 0, где f (x ) — некоторая дифференцируемая функция. Тогда при определенных условиях последовательность чисел {x (k ) }, где самое первое значение x (0) выбирается самостоятельно, а каждое последующее находится по формуле

,

сходится к точному решению этого уравнения. Нам сейчас не важно, что это за условия, при желании информацию об ограничениях метода Ньютона можно легко отыскать.

Посмотрим теперь, как использовать этот метод для вычисления эффективной процентной ставки.

Введем новую величину v τ = (1 + i ) -τ , которая называется множителем дисконтирования для периода времени τ. С ее помощью формулу (2), представляющую собой общее соотношение для нахождения эффективной процентной ставки, можно переписать следующим образом:

.

Нахождение корня этого уравнения эквивалентно нахождению корня функции

.

Эта функция имеет только один положительный корень (нас интересуют только положительные корни), причем, он лежит в интервале (0, 1). Этот корень можно легко найти с помощью метода Ньютона, предварительно вычислив производную функции f (x ):

.

x (0) = 1, с помощью формулы (4) мы получим последовательность чисел x (k ) , сходящихся к точному значению v τ . Приближенное значение искомой эффективной процентной ставки находится из следующего соотношения:

(предполагается, что мы закончили вычисления на шаге с номером n ).

Пример

Найдем эффективную процентную ставку для ссуды размером S 0 = 1000 фунтов стерлингов Соединенного Королевства, выданной на год под простую процентную ставку j = 20%. Для погашения ссуды заемщиком были внесены следующие частичные платежи:

  • R 1 = 600 фунтов стерлингов через 3 месяца (t 1 = ¼) после начала сделки;
  • R 2 = 310 фунтов стерлингов через 9 месяцев (t 2 = ¾) после начала сделки;
  • R 3 = 194,25 фунтов стерлингов через год (t 3 = 1) после начала сделки.

В качестве периода времени τ выберем один квартал (τ = ¼). В соответствии с описанным выше методом, введем вспомогательную функцию

f (x ) = 600 x + 310 x 3 + 194,25 x 4 - 1000

и найдем ее производную:

f (x ) = 600 + 930 x 2 + 777 x 3 .

Теперь, выбрав в качестве начального приближения x (0) = 1, с помощью формулы (4) построим последовательность приближенных значений дисконтирующего множителя v τ и эффективной процентной ставки i :

k x (k ) i
0 1 i ≈ 0
1 0,95481144343303 i ≈ 0,20317704736717
2 0,95284386714354 i ≈ 0,21314588059674
3 0,95284030323558 i ≈ 0,2131640308135
4 0,95284030322392 i ≈ 0,21316403087292
5 0,95284030322392 i ≈ 0,21316403087292

Уже на пятом шаге расчет привел к тому же результату, что и на предыдущем, причем с точностью, которая вам вряд ли когда-нибудь сможет понадобиться. Полученный результат более чем на 1,3% превышает заявленную (номинальную) процентную ставку по ссуде, хотя здесь не было ни скрытых комиссий, ни каких-либо других дополнительных выплат.

Замечание. Лучший способ быстро произвести расчет эффективной процентной ставки (не имея под рукой специального финансового калькулятора или компьютерной программы) — это воспользоваться каким-нибудь табличным редактором. Например, в онлайновом табличном редакторе Google весь расчет выглядит примерно следующим образом:

Рис. Вычисление эффективной процентной ставки с помощью табличного редактора

Обратите внимание на следующие моменты:

  1. В табличном редакторе не нужно вручную вычислять коэффициенты при степенях x для производной — они могут быть найдены по формуле, как показано на первом рисунке.
  2. С помощью функции SERIESSUM (второй рисунок) можно легко вычислять значения как самой функции f (x ), так и ее производной.

Пример

Разберем теперь более сложный, но более актуальный пример.

Кредит размером 24 тысячи евро, выданный на два года под 12% годовых, погашается ежемесячными платежами в соответствии с дифференцированной схемой . Комиссия за организацию кредита составляет 1% от его суммы. Кроме того, каждый месяц с заемщика взимается комиссия за ведение ссудного счета размером 0,1% от суммы кредита. Нам нужно найти эффективную процентную ставку по данному кредиту.

Прежде всего, построим график погашения кредита (без учета структуры платежей). Платежи в счет погашения кредита образуют арифметическую прогрессию с начальным членом

A 1 = ( + 0,12 × ) × 24 000 = 1240 евро

и разностью

- (0,12 × × 24 000) × = - 10 евро.

Кроме того, при получении кредита заемщик был вынужден заплатить 0,01 × 24 000 = 240 евро, а каждый месяц с него взимается комиссия размером 0,001 × 24 000 = 24 евро. Значит, график платежей по кредиту имеет следующий вид:

Рис. График платежей по кредиту

Значения столбца «с комиссией, Rk », за исключением самого первого (с индексом 0), совпадают с коэффициентами при степенях x у функции f (x ), которую мы будем использовать в расчетах. Для получения первого коэффициента (при нулевой степени x ) нужно из начального платежа R 0 = 240 вычесть размер кредита (формула в левом верхнем углу):

Рис. Нахождение коэффициентов функции f(x)

Коэффициенты при степенях x у производной f "(x ) находятся по уже известному нам принципу:

Рис. Нахождение коэффициентов производной f"(x)

Теперь, наконец, можно применить метод Ньютона для нахождения месячного множителя дисконтирования (формула в левом верхнем углу):

Рис. Нахождение месячного множителя дисконтирования

Одновременно с вычислением месячного множителя дисконтирования определяем саму эффективную процентную ставку i :

Рис. Нахождение эффективной процентной ставки

Как и в примере из предыдущего параграфа, метод Ньютона привел нас к окончательному ответу всего лишь за пять вычислений: эффективная процентная ставка по рассматриваемому кредиту приближенно равна 16,38%, на 4,38% больше, чем номинальная ставка.

Вычисление ЭПС для аннуитета

Метод, который мы рассмотрели выше, при правильном его применении, достаточно удобен. Но в определенных случаях, а именно, для аннуитетной схемы погашения кредита, эффективную процентную ставку можно найти еще быстрее и проще. Собственно, основное преимущество метода, который мы рассмотрим далее, заключается в его большей компактности.

Перепишем формулу (3) — соотношение для определения эффективной процентной ставки, которое справедливо при погашении кредита аннуитетными платежами — с помощью уже знакомого нам множителя дисконтирования v τ = (1 + i ) -τ :

Для нахождения корня уравнения (6) можно использовать уже знакомый нам метод Ньютона.Для этого введем функцию

и найдем ее производную:

.

Теперь, если в качестве начального приближения выбрать

,

то с помощью формулы (4) можно получить последовательность чисел {x (k ) }, приближающихся к точному значению множителя дисконтирования v τ .

Пример

Найдем эффективную процентную ставку для кредита из самого первого примера. Условия, напомню, были такие:

  • срок кредитования — 3 года;
  • процентная ставка j — 18% годовых;
  • схема погашения кредита — ежемесячными равными (аннуитетными) платежами;
  • комиссия за организацию кредита — 1% от его суммы;
  • ежемесячная комиссия за ведение ссудного счета — 0,1% от суммы кредита.

Вычислять эффективную процентную ставку по этому кредиту, по-прежнему, будем с помощью какого-нибудь удобного табличного редактора. Вот так приблизительно будут выглядеть начальные условия (нет необходимости вручную вычислять размеры платежей — можно использовать нужные формулы непосредственно в ячейках таблицы):

Рис. Внесение начальных условий

Следующий шаг — это вычисление коэффициентов функции f (x ):

Рис. Вычисление коэффициентов функции f (x )

Первый коэффициент по совместительству является начальным приближением x (0) . Переносим его в соответствующую ячейку и по методу Ньютона вычисляем несколько приближений месячного множителя дисконтирования (обратите внимание на формулу в левом верхнем углу):

Рис. Вычисление месячного множителя дисконтирования

Одновременно с этим вычисляем приближенные значения эффективной процентной ставки i :

Рис. Вычисление эффективной процентной ставки

Как видите, после восьми вычислений мы еще раз подтвердили, что эффективная процентная ставка по рассматриваемому кредиту составляет около 22,8%, на 4,8% больше, чем номинальная.

Замечание. Один раз заполнив формочку, подобную приведенной на рисунках, вы впоследствии сможете моментально определять эффективную процентную ставку по любому кредиту, погашаемому в соответствии с аннуитетной схемой, только лишь меняя начальные условия.

В заключение хочется сделать еще одно важное общее замечание. Рассмотренный нами метод гарантированно сойдется (то есть приведет к искомым значениям множителя дисконтирования и эффективной процентной ставки), если в качестве начального значения выбрать величину (7). Если же взять какое-нибудь другое начальное приближение, то метод может сойтись ко второму корню функции f (x ) — единице (соответствующее значение эффективной процентной ставки равно нулю). Например, в рассмотренном нами примере так произошло бы, возьми мы в качестве начального приближения любое число больше 0,992.


И еще одно общее замечание относительно выбора численного метода. Существует великое множество численных методов, многие из которых вполне можно было бы применить для решения наших задач. Метод Ньютона был выбран из-за его, на мой взгляд, оптимального соотношения между сложностью применения и скоростью сходимости (вы ведь помните, мы ни в одном из примеров не делали больше восьми вычислений). Существуют более быстрые, но более сложные для понимания методы. Существуют более простые методы, с меньшим количеством ограничений и гарантированной сходимостью, но требующие большого количества вычислений. Например, если бы мы в последнем примере использовали широко известный метод простой итерации , то для достижения требуемой точности нам пришлось бы сделать около сотни вычислений. Понятно, что эти вычисления делает программа, но тем не менее.

(Effective Rate of Interest) — ставка, на основе которой осуществляется ожидаемого потока будущих денежных платежей или поступлений в течение ожидаемого срока действия (существования) к чистой балансовой стоимости (амортизированной стоимости) этого финансового инструмента.

Эффективная ставка процента используется в банках при первоначальном признании финансового инструмента в с целью обеспечения подготовки банками в соответствии с . Эффективная ставка процента обеспечивает одинаковый уровень доходности (затратности) путем равномерного распределения доходов и расходов на все периоды в течение срока действия финансового инструмента.

Эффективная ставка процента применяется для:

  • признания процентных доходов (расходов) по финансовому инструменту;
  • оценки финансовых инструментов, учитываемых по амортизированной стоимости (кредитов, депозитов, долговых ценных бумаг);
  • вычисления приведенной стоимости будущих денежных потоков для расчета обесценения финансовых активов.

Банки применяют по таким финансовым инструментам:

  • кредитам и депозитам ;
  • кредитам (возобновляемая ).

Эффективная ставка процента рассчитывается следующим образом:

  1. определяются исходные данные для денежных потоков:
    • чистая балансовая стоимость при первоначальном признании финансового инструмента;
    • ожидаемые будущие потоки денежных средств;
    • сроки возникновения будущих потоков денежных средств;
  2. осуществляется расчет эффективной ставки процента;
  3. строится график признания доходов (расходов), погашения основной суммы долга (номинала) и процентов по финансовому инструменту;
  4. проверяется правильность проведенных расчетов.

В расчет эффективной ставки процента банк включает все комиссии и сборы, которые им уплачены или получены, расходы на операцию, что является неотъемлемой частью дохода (расходов) финансового инструмента. Для вычисления эффективной ставки процента используется следующая формула:

где CF i — денежный поток за период t i ;
R ef — эффективная ставка процента за период, соответствующий единице измерения периодов возникновения потоков денежных средств (день, месяц, год);
t i — длительность периода возникновения i-го денежного потока, выраженный в единицах измерения периодов возникновения потоков денежных средств (дни, месяцы, годы);
i = 0 … n; n — количество потоков денежных средств.

В зависимости от периодичности признания процентных доходов (расходов) банки применяют годовую, месячную или дневную эффективную ставку процента. Текущую стоимость ожидаемых будущих денежных потоков финансового инструмента банк рассчитывает по эффективной ставке процента, определенной при первоначальном признании этого финансового инструмента.

Разница между () и текущей стоимостью ожидаемых будущих денежных потоков финансового инструмента признается как процентный доход или процентные расходы.

Во временном ряде денежных потоков обязательно должен быть нулевой период, в котором фиксируются средства, предоставленные или полученные банком в соответствии с условиями финансового инструмента (CF 0 ). Величина потока денежных средств для нулевого периода равна чистой балансовой стоимости при первоначальном признании финансового инструмента. Чистая балансовая стоимость финансового инструмента на дату первоначального признания состоит из его на дату первоначального признания и расходов на операцию.

Денежные потоки, которые будет платить банк, включаются в расчет со знаком «-», а денежные потоки, которые будет получать банк, включаются в расчет со знаком «+». Порядок исчисления эффективной ставки процента банки определяют самостоятельно, а расчеты осуществляются с применением индивидуального программно-технического комплекса автоматизации банковских операций.

Включайся в дискуссию
Читайте также
Что такое капитализация вклада и капитализация процентов по вкладу?
Заявление на страхование осаго страхование
Зойкина квартира краткое содержание